Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tire wear particles (TWPs), a form of microplastics (MPs) pollution, are transported into waterbodies through stormwater runoff, leading to environmental pollution and impacts on associated biota. Here, we investigated the effectiveness of stormwater filter socks filled with rice husk biochar or pine tree woodchips in reducing TWP pollution in urban runoff in Oxford, Mississippi. Triplicate runoff samples were collected upstream and downstream of the biofilters at two sites during two storm events at peak flow within minutes of the start of the storm and after 30 min. Samples were analyzed for TWPs using a combination of stereomicroscopy, micro-attenuated total reflectance Fourier transform infrared spectroscopy (µ-ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Concentrations (TWPs/L) upstream of the biofilter were variable but highest at the start of the runoff, dropping from an average of 2811 ± 1700 to 476 ± 63 after 30 min at site 1 and from 2702 ± 353 to 2356 ± 884 at site 2. Biochar was more effective than woodchips (p < 0.05) at removing TWPs, reducing concentrations by an average of 97.6% (first use) and 85.3% (second use) compared to 66.2% and 54.2% for woodchips, respectively. Biochar was particularly effective at removing smaller TWPs (<100 µm). Both materials became less effective with use, suggesting fewer available trapping sites and the need for removal and replacement of the material with time. Overall, this study suggests that biochar and woodchips, alone or in combination, deserve further scrutiny as a potential cost-effective and sustainable method to mitigate the transfer of TWPs to aquatic ecosystems and associated biota.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Automobile paint chips are a crucial piece of trace evidence for forensic investigators. This is because automotive paints are composed of multiple layers, including the primer, basecoat, and clearcoat, each of which has its own chemical composition that can vary by vehicle make, model, year, and manufacturing plant. Thus, Fourier‐transform infrared (FTIR) spectral databases for automobile paint systems have been established to aid law enforcement in, for example, narrowing search parameters for a suspect's vehicle. Recently, car manufacturers have implemented primers on plastic substrates that are much thinner (~5 μm) than those on metal substrates, making it more difficult to manually separate for analyses. Here, we evaluated FTIR microspectroscopy (μ‐FTIR) and optical photothermal infrared spectroscopy (O‐PTIR) to chemically image cross sections of paint chips without manually separating the layers. For μ‐FTIR, transmission and transflection modes provided the highest quality spectra compared to reflection and μ‐ATR analyses. Point analysis was preferable to chemical imaging, as peaks were identified in the point (MCT) detector's lower spectral range that was below the imaging (FPA) detector's cutoff, such as those associated with titanium dioxide. Reduced spectral range can lead to a similar issue in O‐PTIR analyses depending on instrument configuration. However, its complementary Raman spectra showed strong titanium dioxide peaks, providing an alternate means of identification. Both techniques are likely to become more relevant as they are non‐destructive and avoid manual separation of the layers. O‐PTIR is particularly well‐suited for analysis of the thin primer layer due to its superior spatial resolution.more » « less
-
The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies.more » « less
-
Plastics are extensively used in agriculture, but their weathering and degradation generates microplastics (MPs) that can be carried by runoff into water bodies where they can accumulate and impact wildlife. Due to its physicochemical properties, biochar has shown promise in mitigating contaminants in agricultural runoff. However, few studies have examined its effectiveness at removing MPs. In this study, we assessed MP pollution (>30 μm) in runoff from a farm in the Mississippi Delta and examined the effectiveness of biochar (pinewood and sugarcane) to remove MPs from aqueous solutions. Using micro-Fourier Transform Infrared spectroscopy (µ-FTIR), we observed an average of 237 MPs/L (range 27–609) in the runoff, with most particles identified as polyethylene, polyamide, polyvinyl chloride, polyurethane, acrylonitrile butadiene styrene, and polyarylamide. Biochar columns effectively removed MPs from runoff samples with reductions ranging from 86.6% to 92.6%. MPs of different sizes, shapes, and types were stained with Nile red dye (to facilitate observation by fluorescence) and quantified their downward progress with multiple column volumes of water and wet/dry cycles. Smaller MPs penetrated the columns further, but ≥90% of MPs were retained in the ∼20 cm columns regardless of their shape, size, and type. We attribute these results to physical entrapment, hydrophobic behaviors, and electrostatic interactions. Overall, this proof-of-concept work suggests biochar may serve as a cost-effective approach to remove MPs from runoff, and that subsequent field studies are warranted.more » « less
-
Tire wear particles (TWPs) are a major category of microplastic pollution produced by friction between tires and road surfaces. This non-exhaust particulate matter (PM) containing leachable toxic compounds is transported through the air and with stormwater runoff, leading to environmental pollution and human health concerns. In the present study, we collected airborne PM at varying distances (5, 15 and 30 m) along US Highway 278 in Oxford, Mississippi, USA, for ten consecutive days using Sigma-2 passive samplers. Particles (~ 1–80 μm) were passively collected directly into small (60 mL) wide-mouth separatory funnels placed inside the samplers. Particles were subsequently subjected to solvent extraction, and extracts were analyzed for TWP compounds by high resolution orbitrap mass spectrometry. This pilot study was focused solely on qualitative analyses to determine whether TWP compounds were present in this fraction of airborne PM. The abundance of airborne TWPs increased with proximity to the road with deposition rates (TWPs cm−2 day−1) of 23, 47, and 63 at 30 m, 15 m, and 5 m from the highway, respectively. Two common TWP compounds (6PPD-Q and 4-ADPA) were detected in all samples, except the field blank, at levels above their limits of detection, estimated at 2.90 and 1.14 ng L−1, respectively. Overall, this work suggests airborne TWPs may be a potential inhalation hazard, particularly for individuals and wildlife who spend extended periods outdoors along busy roadways. Research on the bioavailability of TWP compounds from inhaled TWPs is needed to address exposure risk.more » « less
-
Tire wear particles (TWPs) are a major category of microplastic pollution produced by friction between tires and road surfaces. This non-exhaust particulate matter (PM) is transported through the air and with runoff leading to environmental pollution and health concerns. Here, we collected airborne PM along paved roads with different traffic volumes and speeds using Sigma-2 passive samplers. Particles entering the samplers deposit onto substrates for analysis, or, as we modified it, directly into small (60 ml) separatory funnels, which is particularly useful with high particle loads, where a density separation aids in isolating the microplastics. We quantified putative TWPs (∼10–80 µm) deposited on the substrates (primarily adhesive tape on glass slides) and in the funnels using stereomicroscopy. Putative TWP deposition rates (particles/cm 2 /day ± SD) at 5 m from the road were highest near a busy highway (324 ± 129), followed by a boulevard with moderate traffic (184 ± 93), and a slow traffic avenue (29 ± 7). We observed that deposition rates increased within proximity to the highway: 99 ± 54, 180 ± 88, and 340 ± 145 at 30, 15, and 5 m, respectively. We show that TWP abundances (i.e., deposition and mass concentration) increase with vehicle braking (driving behavior). We observed no differences ( p > 0.05) between the separatory funnel and adhesive tape collection methods. In addition, we were able to obtain FTIR spectra of TWPs (>10 µm) using µ-ATR-FTIR. Both deserve further scrutiny as novel sampling and analytical approaches. In a separate sampling campaign, we differentiated 1438 particles (∼1–80 µm) deposited on boron substrates into TWP, metal, mineral, and biogenic/organic classes with single particle SEM/EDX analysis based on morpho-textural-chemical classification and machine learning. The results revealed similar concentration trends with traffic (high > moderate > low), with the distribution of particle sources alike for the highway and the moderate road: TWPs (∼38–39%) > biogenic (∼34–35%) > minerals (∼23–26%), and metallic particles (∼2–3%). The low traffic road yielded a much different distribution: biogenic (65%) > minerals (27%) > TWPs (7%) > metallic particles (1%). Overall, this work provides much-needed empirical data on airborne TWPs along different types of roads.more » « less
An official website of the United States government
